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SUMMARY

Typically, segregated methods have been used for the computation of incompressible �ows whereas
coupled solvers, for compressible �ows. Compared to coupled solvers, segregated methods present the
advantage of computational savings in RAM memory and CPU time, although at the cost of an inferior
robustness. However, previously published segregated algorithms for general compressible �ows are
known to present pitfalls, like convergence to wrong solutions, lack of robustness in the presence of
strong discontinuities, such as normal and oblique shocks, and complicated boundary condition impo-
sition. Therefore, in this paper a segregated method for non-isothermal compressible �ows is proposed
that preserves the thermodynamic coupling and overcomes the criticisms of existing methods. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

At present, there is a clear dichotomy between the numerical algorithms for the computation of
compressible and incompressible �ows. In particular, compressible �ows are typically solved
via coupled solvers whereas incompressible �ows, via segregated strategies.
As pointed out in the �rst paper of this series [1], the main reasons for that dichotomy

are that compressible �ows present a strong thermodynamic coupling among the dependent
variables, such as the pressure, density and temperature, which does not exist for incom-
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pressible �ows. On the other hand, in incompressible �ows, the semi-de�nite structure of the
discrete algorithms �nds in regularization or segregated strategies a solution to circumvent
this numerical di�culty. The literature and the variety of solutions on this topic is very rich,
including arti�cial compressibility methods [2], penalty methods [3, 4], augmented Lagrangian
methods [5–7], projection methods and fractional momentum methods [2, 8–11] and mixed
methods [12–14]. For further information, the interested reader can consult References [15–17]
and references therein.
In this paper, we focus on the improvement of existing segregated techniques for compress-

ible and incompressible �ows. While coupled solvers are typically more robust, segregated
solvers have computational advantages such as an inferior memory and CPU time demands,
and a higher modularity and �exibility in order to incorporate new physical phenomena mod-
elled by additional partial di�erential equations. These advantages are even more relevant in
the solution of large scale problems and in the application to parallel codes.
Segregated methods can also be classi�ed as implicit or explicit. Implicit algorithms require

the solution of linear systems of equations at each time step, whereas explicit methods do
not. By avoiding matrix inversions, explicit methods decrease the solution time per step, but
the maximum allowed time step is limited by stability conditions, a limit that most implicit
methods escape. Up to date, segregated methods for transient incompressible �ows are implicit.
Therefore, explicit segregated methods �nd application only for compressible �ows or steady
incompressible �ows (see Reference [18]).
Several strategies have been suggested to develop uni�ed approaches for the computation

of compressible and incompressible �ows, both, with coupled solvers [19, 20] and segregated
approaches [18, 21–24]. However, the success of existing segregated techniques for compress-
ible �ows has only been partial. For instance, several passes through the same equation or
fractional steps may be required, even for �rst-order accuracy. Segregated solvers based on
pressure Poisson equations may require non-trivial pressure boundary conditions. This can
get even more cumbersome and complicated in the intermediate fractional steps. Finally, the
existing techniques are not robust when confronted to strong discontinuities, such as normal
and oblique shocks, or even converge to wrong solutions.
Therefore, in this paper the work [1] is extended to general divariant compressible �ows. The

variational formulation is based on stabilized methods, which have been successfully applied
to the computation of compressible and incompressible �ows (see References [19, 20, 25–41]
and references therein). Then a new splitting is proposed, which preserves the thermodynamic
coupling, leading to a method that overcomes the problems of previously published methods.

2. THE SYSTEM OF EQUATIONS FOR COMPRESSIBLE FLOW

The equations for compressible �ow form an advective–di�usive system, constituted by the
continuity, momentum and total energy equations. In conservative form, the system can be
written as

U; t + Fadvi; i =F
di�
i; i + S (1)

where U represents the vector of conservation variables, Fadvi is the advective �ux in the ith-
direction, Fdi�i is the di�usive �ux in the ith-direction, and S is the source vector. The inferior
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comma denotes partial di�erentiation and the summation convention on repeated indices is
applied throughout.
In three-dimensional Cartesian coordinates, the above vectors are

U=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U1
U2
U3
U4
U5

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

u1
u2
u3
etot

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2)

Fadvi = �ui

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

u1
u2
u3
etot

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+ p

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0

�1i
�2i
�3i
ui

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3)

Fdi�i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0

�1i
�2i
�3i
�ijuj

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0

0

0

0

qi

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4)

S= �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0

b1
b2
b3

biui + r

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5)

where ui are the Cartesian velocity components, � the �uid density, p the thermodynamic
pressure, etot = e + 1

2 |u|2 the total energy per unit mass, sum of the speci�c internal energy
e and speci�c kinetic energy 1

2 |u|2. Furthermore, �ij represents the Kronecker delta, �ij the
viscous stress tensor, qi the molecular heat �ux, bi the body force per unit mass and r a
volumetric heat source.
Using any well-de�ned set of variables Y, it is possible to rewrite (1) in quasi-linear

form as

A0Y; t +AiY; i=(KijY; j); i + S (6)

where A0 =U;Y, Ai=Fadvi;Y is the ith Euler–Jacobian matrix, and K=[Kij] is the di�usivity
matrix where KijY; j=Fdi�i .
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In this paper, special attention is paid to the choice of pressure primitive variables

Y=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

u1

u2

u3

T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7)

with p the pressure, ui the Cartesian velocity components and T the absolute temperature. The
matrices and vectors for these variables can be found in Reference [20]. This set of variables
is endowed with the property that the incompressible limit is well behaved.

2.1. Generalized entropy function and the symmetric form

Symmetric forms of (1) and (6) are those in which the coe�cient matrices enjoy the
properties

1. Ã0 =U;V is symmetric, positive-de�nite;
2. Ã i=Fadvi;V is symmetric;
3. K̃=[K̃ ij] is symmetric, positive-semide�nite.

It is known that symmetric forms are linked to nonlinear stability principles through the
so-called generalized entropy functions, which at the same time engender the entropy variables
[42, 43]. This form of the system can be viewed as a canonical form, that can be used up by
numerical analysts to design better numerical algorithms.
For instance, appropriately de�ned �nite element methods based on entropy variables can

inherit at the discrete level the nonlinear stability principle. Also, as shown in References
[19, 20], new methods can be derived for any choice of well de�ned variables starting from
the canonical form based on entropy variables.
In the case of compressible �ows, the generalized entropy is just the physical entropy

[44, 29], which for a general divariant �uid [45], it is de�ned as

H(U)= − �(s− s0) (8)

where s is the physical entropy and s0 is the reference entropy.
Then, a change of variables from conservation to entropy variables U �→ V is introduced

by means of

VT =
@H(U)
@U

(9)
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resulting in the set of generalized entropy variables,

V=
1
T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

� − 1
2 |u|2
u1
u2
u3
−1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(10)

The above equation has been written as a function of �, the electrochemical potential per unit
mass. Note that

�= h− Ts= e+ p
�

− Ts (11)

It can be veri�ed that the change of variables U �→ V induces a Hessian matrix Ã−1
0 =H;UU

which is symmetric and positive-de�nite. Therefore, the change of variables is well de�ned
and the function H(U) is a convex function of U. Likewise, the matrices Ã i is symmetric
and K̃=[K̃ ij] is symmetric positive-semide�nite (see Reference [45]).

2.2. Generalized entropy (in)equality

The stability principle of the Navier–Stokes equations is a combination of the conservation
laws and can be obtained by the dot product

V · (U; t + Fadvi; i − Fdi�i; i − S)=0 (12)

That is, the entropy variables are the integration factors that make the above di�erential exact.
The result, derived in Reference [29] for a perfect gas and extended in Reference [45] for a
general divariant �uid is the following:

(�s); t + (�sui); i +
(−�T; i

T

)
; i

− �r
T
=

(
�(u; u)
T

)
+ �

T; iT; i
T 2

(13)

¿ 0

which is the second law of thermodynamics. Here, �(u; u)¿0 is the viscous dissipation
function, �¿0 is the heat conductivity and T¿0 is the absolute temperature. The entropy
�ux is seen to be

�ui= − �sui=Hui (14)

Therefore, integration over the domain � gives rise to the Clausius–Duhem inequality

∫
�
(H; t + (uiH); i + �r) d�−

∫
�

qini
T
d�60 (15)

This implies that under appropriate boundary conditions and body source term, the generalized
entropy is a bounded function. Since H(U) is a convex function of the conservation variables
U, the conservation variables are themselves bounded.
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2.3. Incompressible limit

The incompressible limit is well behaved for entropy and pressure primitive variables. For
more details, the interested reader is referred to References [19, 20].

3. STABILIZED FINITE ELEMENT METHOD

In this paper, the time-discontinuous space–time SUPG and GLS stabilized methods [25, 33, 35]
are considered. In the absence of source terms and for linear shape functions both methods
coincide.
Consider a space–time domain, where the time interval I =]0; T [ is subdivided into N

intervals In=]tn; tn+1[, n=0; 1; : : : ; N − 1. We de�ne for each time interval Qn=�× In and
Pn=�× In, where � is the spatial domain and � its boundary. Finally, the ‘slab’ Qn is
decomposed into elements Qen, e=1; 2; : : : ; (nel)n.
The variational formulation is de�ned for the set of variables Y according to Refer-

ences [19, 20]. Within each Qn, n=0; 1; : : : ; N − 1, �nd Y ∈ SY such that ∀ W ∈ VY

∫
Qn
(−W; t ·U(Y)−W; i ·Fadvi (Y) +W; i ·KijY; j −W ·S) dQ

+
∫
�
(W(t−n+1) ·U(Y(t−n+1))−W(t+n ) ·U(Y(t−n ))) d�

+
(nel)n∑
e=1

∫
Qen

(LTW) · �(LY − S) dQ

+
(nel)n∑
e=1

∫
Qen

�hgijW; i ·A0Y; j dQ

=
∫
Pn
W · (−Fadvi (Y) + Fdi�i (Y))ni dP (16)

The �rst and last integrals constitute the Galerkin terms expressed as a function of the
variables Y, again written in conservative form to ensure that the weak solution is bestowed
with the correct Rankine–Hugoniot relations. The jump term is written with the help of the
right and left limits,

W (t±n )= lim
�→0±

W (tn + �) (17)
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The least-squares contribution is written in terms of the di�erential operator L and LT,
which, respectively, are given by

L=A0
@
@t
+Ai

@
@xi

− @
@xi

(
Kij

@
@xj

)
(18)

and

LT =AT0
@
@t
+ATi

@
@xi

− @
@xi

(
KTij

@
@xj

)
(19)

Note that when entropy variables are used, L̃= L̃T because of the symmetry of the coe�cient
matrices and the symmetric form is recovered. We assume

�=Y;V �̃ (20)

For de�nitions of the � matrix see References [31, 35]. In this work, two simpli�ed operators,
the diagonal and the non-diagonal, are used (see References [46, 1]).
The fourth integral is the discontinuity capturing operator [47, 19], a function of the arti�cial

di�usivity coe�cient,

�hHM =max

⎛⎝0;[ (LY − S) · Ã−1
0 (LY − S)

gijY; i ·ADC0 Y; j

]1=2
− (LY − S) · �̃(LY − S)

gijY; i ·ADC0 Y; j

⎞⎠ (21)

�hquad = 2
(LY − S) · �̃ (LY − S)

gijY; i ·ADC0 Y; j
(22)

�hmin =min(�
h
HM ; �

h
quad) (23)

where

ADC0 =VT;YÃ0V;Y=V
T
;YA0 (24)

Also, gij denotes the contravariant metric tensor,

gij =[	k; i	k; j]−1 (25)

where 	k , k=1; 2; 3, are the local element coordinates.

4. SEGREGATED FORMULATION

Substitution of the �nite element spaces in the above weak form leads to a set of nonlinear
equations. This system of equations is coupled and can be written as a residual which depends
on the nodal unknowns y at time tn and tn+1,

R(y(n+1); y(n))= 0 (26)

For compressible �ows, coupled solvers are typically employed to drive the nonlinear resid-
ual to zero via a series of linear problems. An interesting choice to achieve convergence in
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a systematic and general way is to introduce predictor multi-corrector algorithms [25, 34, 48],
where an update of the solution 	y is computed at each iteration according to

M	y=−R
ynew = yold + 	y

(27)

Ideally, the matrix M is the consistent tangent, that is, the Jacobian of the residual with
respect to the unknowns,

M=
@R

@y(n+1)
(28)

The consistent tangent gives the highest convergence rates within the radius of convergence,
that is, when the initial guess is su�ciently close to the exact solution. However, when
this is not the case, approximations of M may result in more robust algorithms and higher
convergence rates or, simply, give rise to more convenient algorithms.
In this paper, segregated solvers for the problem (27) are analysed. In particular, the vector

of unknowns is split into three parts

Y=

⎧⎪⎨⎪⎩
Y�
Yu
Ye

⎫⎪⎬⎪⎭ (29)

For instance, for pressure primitive variables

Y� =
{
p

}
(30)

Yu =

⎧⎪⎨⎪⎩
u1
u2
u3

⎫⎪⎬⎪⎭ (31)

Ye =
{
T

}
(32)

The nodal unknowns and the equations can be segregated in a similar manner

y=

⎧⎪⎨⎪⎩
y�
yu
ye

⎫⎪⎬⎪⎭ (33)

R=

⎧⎪⎨⎪⎩
R�

Ru

R e

⎫⎪⎬⎪⎭ (34)
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Then, the Newton–Raphson method (27) can be expressed as⎡⎢⎣M�� M�u M�e

Mu� Muu Mue

M e� M eu Mee

⎤⎥⎦
⎧⎪⎨⎪⎩
	y�
	yu
	ye

⎫⎪⎬⎪⎭ = −

⎧⎪⎨⎪⎩
R�

Ru

R e

⎫⎪⎬⎪⎭ (35)

In the next subsections, several staggered iterative strategies to tackle the above problem
are examined.

4.1. Naive iterative methods based on primitive variables

The obvious way to solve the system (35) is to apply the methods presented in the �rst
paper [1].
Diagonal iterative method (Algorithm 1): This algorithm consists of neglecting the o�-

diagonal terms of the tangent matrix M and, thus, only considering the diagonal blocks. That is

M��	y� =−R�

Muu	yu =−Ru (36)

Mee	ye =−R e

The algorithm is displayed in Box 1, where i denotes the iteration counter, imax the number
of corrector passes, and the residual at iteration i is denoted by

R(i)� =R�(y
(i)
(n+1); y(n)) (37)

R(i)u =Ru(y
(i)
(n+1); y(n)) (38)

R(i)e =R e(y
(i)
(n+1); y(n)) (39)

Jacobi or Gauss–Seidel iterative method (Algorithm 2): This is a little more sophisticated
version of the diagonal algorithm, where the coupling blocks are driven into the right-hand
side and carried on in an explicit manner (see Box 2). In the Jacobi method, the o�-diagonal
blocks are evaluated at the previous corrector pass, whereas in the Gauss–Seidel method, the
most up-to-date blocks are employed for that

M��	y� =−R� −M�u	yu −M�e	ye

Muu	yu =−Ru −Mu�	y� −Mue	ye (40)

Mee	ye =−R e −M e�	y� −M eu	yu

However, these methodologies, that work perfectly for the isothermal case and have been
applied successfully to low Mach number �ows (see Reference [49]), present convergence

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:183–209



192 G. HAUKE ET AL.

Box 1. Predictor multi-corrector algorithm. Diagonal iterative method.

(Predictor phase)
y(0)� = y�(n)
y(0)u = yu(n)
y(0)e = ye(n)
(Multi-corrector phase)
for i=0; 1; : : : ; imax − 1
M��	y

(i)
� = −R(i)�

Muu	y
(i)
u = −R(i)u

Mee	y
(i)
e = −R(i)e

y(i+1)� = y(i)� +	y(i)�
y(i+1)u = y(i)u +	y

(i)
u

y(i+1)e = y(i)e +	y
(i)
e

y�(n+1) = y
(imax)
�

yu(n+1) = y
(imax)
u

ye(n+1) = y
(imax)
e

Box 2. Predictor multi-corrector algorithm. Jacobi iterative method.

(Predictor phase)

y(0)� = y�(n)
y(0)u = yu(n)
y(0)e = ye(n)
(Multi-corrector phase)
for i=0; 1; : : : ; imax − 1
M��	y

(i)
� = −R(i)� −M�u	y

(i−1)
u −M�e	y

(i−1)
e

Muu	y
(i)
u = −R(i)u −Mu�	y

(i−1)
� −Mue	y

(i−1)
e

Mee	y
(i)
e = −R(i)e −M e�	y

(i−1)
� −M eu	y

(i−1)
u

y(i+1)� = y(i)� +	y(i)�
y(i+1)u = y(i)u +	y

(i)
u

y(i+1)e = y(i)e +	y
(i)
e

y�(n+1) = y
(imax)
�

yu(n+1) = y
(imax)
u

ye(n+1) = y
(imax)
e
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problems for general compressible �ows. One of the causes can be traced back to the fact
that for compressible �ows, the complete mass matrix is positive-de�nite, whereas the lone
diagonal block of the energy equation Mee is not. Also, another cause for this behaviour is
the strong coupling between the thermodynamic variables.

4.2. Iterative techniques based on mixed variables

In order to overcome the di�culties explained above, several strategies are proposed �rstly.
To attain a positive-de�nite block for the energy equation, the total energy per unit volume
�etot is employed as the dependent variable for the energy equation. Then, the temperature T
is calculated according to di�erent update algorithms.
Three variants A, B and C were tested.

(A) The temperature is computed from the total energy density, so the whole change of
total energy is assigned to the internal energy. For example, for a calori�cally perfect
�uid, the temperature will be updated according to

�e(i+1)tot =�(i)(cvT (i+1) + 1
2 |u(i)|2) (41)

or

T (i+1) =f(y(i+1)e ; y(i)� ; y
(i)
u ) (42)

The algorithm is displayed in Box 3.

Box 3. Predictor multi-corrector algorithm based on mixed variables for versions A and B.

(Predictor phase)

y(0)� = y�(n)
y(0)u = yu(n)
y(0)e = ye(n)
(Multi-corrector phase)
for i=0; 1; : : : ; imax − 1
M��	y

(i)
� = −R(i)�

Muu	y
(i)
u = −R(i)u

Mee	y
(i)
e = −R(i)e

y(i+1)� = y(i)� +	y(i)�
y(i+1)u = y(i)u +	y

(i)
u

y(i+1)e = y(i)e +	y
(i)
e

Compute T (i+1)

y�(n+1) = y
(imax)
�

yu(n+1) = y
(imax)
u

ye(n+1) = y
(imax)
e
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(B) The update of the temperature is computed from the update of the total energy density
taking into account the already computed variation of the kinetic energy given by the
momentum equations, i.e.

	y(i)e ≈ �	e(i)tot =�	(e+ k)(i) =�(cv	T (i) + 	k(i)) (43)

or

T (i+1) =f(�(i);	e(i);	k(i)) (44)

In this way, the variation of total energy is distributed into variation of thermal energy
and kinetic energy. See Box 3.

(C) This third algorithm is similar to the semi-implicit CBS algorithm proposed by Codina
et al. for pressure primitive variables [24]. In particular, the temperature and the density
are eventually updated according to

T (i+1) =f(y(i+1)e ; y(i+1)� ; y(i+1)u ) (45)

and

�(i+1) =
p(i+1)

RT (i+1)
(46)

The algorithm is expressed with more detail in Box 4, where some intermediate ther-
modynamic variables are computed along the steps. First, from the energy equation,
an update for the total energy is obtained, and the intermediate temperature Tg, cal-
culated. Then from the continuity equation, which depends only on the density and
velocity, the pressure is updated and an intermediate density �g is computed. Finally,
the velocity is updated and the �nal temperature and density, calculated.

Several numerical tests have shown that strategy (B) can lead to incorrect temperature
�elds. On the other hand, the solution given by algorithms (A) and (C) is very sensitive to the
pressure accuracy. And although these algorithms can also be used to solve low Mach number
�ows [49], as already pointed out in Reference [24], for �ows with strong nonlinearities,
such as �ows with shock waves, convergence problems may appear when pressure primitive
variables are used.

4.3. General segregated method with thermodynamic coupling

The ill-convergence of the above algorithms has been �nally traced back to the strong coupling
between the thermodynamic variables. Thermodynamically segregated formulations are not
able to mimic this behaviour. Therefore, in order to cure the problem, a coupled treatment of
the continuity and energy equations is proposed.
So let us now introduce the splitting

Y=

{
Y�e

Yu

}
(47)
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Box 4. Predictor multi-corrector algorithm based on mixed variables for version C.

(Predictor phase)

y(0)� = y�(n)
y(0)u = yu(n)
y(0)e = ye(n)
(Multi-corrector phase)
for i=0; 1; : : : ; imax − 1
Mee	y

(i)
e = −R(i)e

y(i+1)e = y(i)e +	y
(i)
e

Tg=f(y
(i+1)
e ; y(i)� ; y

(i)
u )

M��	y
(i)
� = −R(i)�

y(i+1)� = y(i)� +	y(i)�
�g= p(i+1)=RTg

Muu	y
(i)
u = −R(i)u

y(i+1)u = y(i)u +	y
(i)
u

T(i+1) =f(y(i+1)e ; y(i+1)� ; y(i+1)u )
�(i+1) = p(i+1)=RT(i+1)

y�(n+1) = y
(imax)
�

yu(n+1) = y
(imax)
u

ye(n+1) = y
(imax)
e

For instance, this splitting yields for pressure primitive variables to

Y�e =

{
p

T

}
(48)

Yu =

⎧⎪⎨⎪⎩
u1
u2
u3

⎫⎪⎬⎪⎭ (49)

The nodal unknowns and the equations are ordered in a similar manner

y=

{
y�e
yu

}
(50)

R=

{
R�e

Ru

}
(51)
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Box 5. Predictor multi-corrector algorithm. Diagonal iterative method with
thermodynamic coupling.

(Predictor phase)

y(0)�e = y�e(n)
y(0)u = yu(n)
(Multi-corrector phase)
for i=0; 1; : : : ; imax − 1
M�e�e	y

(i)
�e = −R(i)�e

Muu	y
(i)
u = −R(i)u

y(i+1)�e = y(i)�e +	y
(i)
�e

y(i+1)u = y(i)u +	y
(i)
u

y�e(n+1) = y
(imax)
�e

yu(n+1) = y
(imax)
u

where the residual R�e gathers the contributions of the continuity and energy equations,
whereas Ru gathers the momentum equations.
The Newton–Raphson method can be written as[

M�e�e M�eu

Mu�e Muu

] {
	y�e
	yu

}
= −

{
R�e

Ru

}
(52)

This system is approximated with a diagonal iterative method, where the coupling blocks are
ignored

M�e�e	y�e =−R�e

Muu	yu =−Ru (53)

The matrices for this strategy can be found in Appendix A and the algorithm is outlined in
Box 5.

5. NUMERICAL EXAMPLES

In this section several examples of compressible �ows are numerically solved with the seg-
regated algorithm presented previously. In all cases the perfect gas state equation is assumed
with 
=1:4 and cv=716:5. For inviscid �ows, the Hughes–Mallet discontinuity capturing op-
erator (21) has been used while for viscous compressible �ows, the minimum operator (23).
All computations have been performed in a personal computer with bilinear quadrilateral
elements, standard 2× 2 Gaussian quadrature and a frontal solver as a linear solver.
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5.1. Normal shock

An inviscid normal M =2 shock is analysed to demonstrate that the formulation is conser-
vative. The mesh consists of 21× 1 square elements covering the domain −2:16x62:1. The
shock is placed at x=0 and the initial conditions are as follows:

x¡0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M =2

u1 = 1

�=1

p=0:178571

x¿0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M =0:577350

u1 = 0:375000

�=2:666667

p=0:803572

(54)

The velocity, temperature and density have been speci�ed at the inlet section and natural
boundary conditions have been assumed at the outlet. The vertical velocity component has
been set to zero in the entire domain.
Figure 1 shows the density variation across the shock where it can be observed that the

most accurate results are attained with the non-diagonal stabilizing matrix. The same comment
can be extended to the rest of variables like for example the horizontal velocity represented
in Figure 2.
The convergence of the algorithm can be evaluated by the evolution of the normalized

residuals associated to the continuity and energy equations given in Figures 3 and 4. Gen-
erally speaking, the formulation with the non-diagonal tau matrix results in a more robust
algorithm since it allows the use of higher CFL numbers which leads to an acceleration of
the convergence rate (see Figure 3).
In addition, for the diagonal tau matrix, increasing of the number of corrector passes to

two (see Figure 4) does not give a better convergence rate. In the case of the non-diagonal
matrix, the convergence rate is improved initially with two corrector passes but at the end, the
residuals maintain constant at higher levels than those achieved with only one pass through
the corrector loop. In any case, the use of two corrector passes is not recommended since it
requires a higher computational e�ort.
Finally, compared to the corresponding coupled algorithm (see Reference [46]) the segre-

gated version presents a lower convergence rate.

Figure 1. Normal shock wave M =2. Density.
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Figure 2. Normal shock wave M =2. Velocity.

Figure 3. Normal shock wave M =2. Convergence for 	t global, imax = 1.

Figure 4. Normal shock wave M =2. Convergence for CFL=1, 	t global.

5.2. Oblique shock wave

This problem consists of an inviscid uniform �ow with M =2 which is sharply turned at an
angle of 10◦ by a wall. An oblique shock develops from the corner forming an angle of 29:3◦

with the wall, as sketched in Figure 5.
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Figure 5. Oblique shock wave M =2. Problem set up.

Figure 6. Oblique shock wave M =2. Mach number.

A mesh of 20× 20 square elements has been used to discretize the computational domain
de�ned over a unit square. The velocity vector, temperature and density have been especi�ed
at the inlet and top boundaries; zero normal velocity has been set at the wall; and none at
the out�ow.
A contour of the Mach number distribution is shown in Figure 6 where the shock can be

clearly distinguished. The density and horizontal velocity variations along the vertical line
x=0:9 are plotted in Figures 7 and 8, respectively. As can be observed, the formulation with
the non-diagonal matrix gives better accuracy than the diagonal matrix. This problem was not
detected when using the coupled solver [46].
Following the guidelines suggested by the previous example, the algorithm has been oper-

ated with the global time step strategy and one corrector pass. A condition CFL=1 has been
needed in order to attain convergence.
Regarding the convergence of the algorithm, Figure 9 shows the residual evolution versus

time step. Again the non-diagonal matrix leads to better convergence rates.
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Figure 7. Oblique shock wave M =2. Density along x=0:9.

Figure 8. Oblique shock wave M =2. x velocity component along x=0:9.

Figure 9. Oblique shock wave M =2. Residual convergence. Global time stepping, CFL=1, imax = 1.

5.3. Supersonic �ow M =3 over a �at plate

This problem, also known as Carter’s �at plate problem, solves the M =3 viscous �ow which
encounters a �at plate at a zero angle of incidence resulting in the generation of a shock and
a boundary layer starting from the leading edge of the plate. Carter’s numerical solution is
published in Reference [50]. The set up of the problem is depicted in Figure 10 where the
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Figure 10. Flat plate M =3. Problem set up.

Reynolds number based on the free stream values and the unit length is 1000. The following
Sutherland’s law for the viscosity has been assumed:

�=
0:0906 T 1:5

T + 0:0001406
(55)

The computational domain extends over −0:26x61:2 and 06y60:8 with the origin placed
at the upstream corner of the plate. Several meshes have been employed though only the
results with a mesh of 112× 64 (7168) square elements will be presented.
As boundary conditions, the velocity components, density and temperature have been pre-

scribed at the in�ow and top boundaries; zero vertical velocity, tangential viscous traction and
heat �ux have been speci�ed at the symmetry line; and along the wall the no-slip condition
together with the stagnation temperature

Ts=T∞

(
1 +


− 1
2

M 2
∞

)
(56)

have been applied. The Prandtl number is 0.72.
The algorithm has been operated with non-diagonal tau matrix, global time strategy, the

discontinuity operator and a condition CFL=1 for convergence.
Figure 11 shows the contours of pressure, Mach number, density and temperature. The

distributions agree well with the results published by other authors (see References [20, 24]).
To analyse the accuracy of the solution, the pressure, temperature, density and the ver-

tical velocity component along the line x=1 are plotted in Figure 12. The variables have
been normalized with respect to the free-stream values. The results are compared with those
presented by Carter [50] and Codina et al. [24] and the correspondence is fully satisfac-
tory. Pressure is only compared to data from Reference [24] since the pressure distribution
obtained by Carter presents oscillations specially near the plate. The formulation with the
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Figure 11. Flat plate M =3. Pressure, Mach number, density and temperature.

Figure 12. Flat plate M =3. Pressure, temperature, density, y velocity component along x=1.
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Figure 13. Flat plate M =3. Pressure coe�cient.

Figure 14. Flat plate M =3. Residual.

Hughes–Mallet discontinuity operator exhibits slight oscillations in the subsonic region which
disappear when the minimum operator is activated. In both cases, the solution seems to be
somewhat over-di�usive in the shock with respect to the distribution of the referenced authors.
The obtained pressure coe�cient along the wall is compared to that published by Carter

in Figure 13 showing a smoother variation without oscillations in the case of the algorithm
developed in the present work.
The normalized residual evolution is plotted in Figure 14, where some oscillations appear

along the �rst time steps. Again, the segregated approach presents lower convergence rate
than the associated coupled algorithm (see Reference [46]).

6. CONCLUSIONS

A segregated algorithm for solving general compressible �ows has been presented. The ap-
proach generalizes the methodology developed in the �rst part for isothermal incompress-
ible �ows [1] to general divariant �uids. The present algorithm solves the conservation
equations via a stabilized �nite element method formulated with the set of pressure primitive
variables. Then, several predictor multi-corrector algorithms are proposed to solve the system
segregatedly.
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The results show that simple versions of the segregated algorithm, where the mass and
energy conservation equations are treated separately, can only be applied to the resolution of
smooth low Mach number �ows. Therefore, in order to attain convergence in compressible
�ows with strong discontinuities, the coupling between the thermodynamic variables must be
preserved.
Thus, a thermodynamically coupled approach is proposed which overcomes the drawbacks

of previously published methods. For instance, the imposition of boundary conditions including
the pressure is straightforward throughout all the corrector passes. In order to achieve con-
vergence, only one pass per equation is necessary. And the method is robust in the presence
of strong discontinuities.
Regarding the stabilization matrix it can be concluded that, compared to the diagonal

stabilizing matrix, the choice of the non-diagonal stabilization matrix gives better accuracy
as well as an increased robustness of the algorithm. This sensitivity to the stabilizing matrix
is not present in the coupled solver.
Compared to the coupled approach, segregated methods may present signi�cant advantages,

such as considerable RAM memory savings.

APPENDIX A: COEFFICIENT MATRICES FOR THE SEGREGATED FORMULATION
WITH THERMODYNAMIC COUPLING

As a function of v the speci�c volume, the isothermal expansion coe�cient can be expressed
as

�T = − 1
v

(
@v
@p

)
T
=
1
�

(
@�
@p

)
T

(A1)

and the isobaric compressibility coe�cient,

�p=
1
v

(
@v
@T

)
p
= − 1

�

(
@�
@T

)
p

(A2)

Also, let us introduce the auxiliary variables

ep1 =
(
@�
@p

)
T
etot + �

(
@e
@p

)
T

(A3)

ep4 =
(
@�
@T

)
p
etot + �

(
@e
@T

)
p

(A4)

Also, the viscous coe�cients are �visc, 
visc and

�visc = 
visc + 2�visc (A5)
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M�e�eab =
1
	t

∫
�e
N eaA0�e�eN

e
b d�

+
∫
�e
N eaAi�e�eN

e
b; i d�

+
∫
�e
N ea; iKij�e�eN

e
b; j d�

+
∫
�e
N ea; iAi�AjN

e
b; j d�

∣∣∣∣
�e�e

+
∫
�e
�egijNea; iA0�e�eN

e
b; j d� (A6)

Muuab =
1
	t

∫
�e
N eaA0uuN

e
b d�

+
∫
�e
N eaAiuuN

e
b; i d�

+
∫
�e
N ea; iKijuuN

e
b; j d�

+
∫
�e
N ea; iAi�AjN

e
b; j d�

∣∣∣∣
uu

+
∫
�e
�egijNea; iA0uuN

e
b; j d� (A7)

The block matrices for the mass conservation and total energy equations are:

A0�e�e =

[
��T −��p
ep1 ep4

]
(A8)

A1�e�e =

[
��Tu1 −��pu1
u1e

p
2 u1e

p
4

]
(A9)

A2�e�e =

[
��Tu2 −��pu2
u2e

p
2 u2e

p
4

]
(A10)

A3�e�e =

[
��Tu3 −��pu3
u3e

p
2 u3e

p
4

]
(A11)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:183–209



206 G. HAUKE ET AL.

K11�e�e =K22�e�e=K33�e�e=

[
0 0

0 �

]
(A12)

Kij�e�e =

[
0 0

0 0

]
i �= j (A13)

And the block matrices to build the momentum equations are

A0uu = �

⎡⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦ (A14)

A1uu = �

⎡⎢⎢⎣
2u1 0 0

u2 u1 0

u3 0 u1

⎤⎥⎥⎦ (A15)

A2uu = �

⎡⎢⎢⎣
u2 u1 0

0 2u2 0

0 u3 u2

⎤⎥⎥⎦ (A16)

A3uu = �

⎡⎢⎢⎣
u3 0 u1

0 u3 u2

0 0 2u3

⎤⎥⎥⎦ (A17)

K11uu =

⎡⎢⎢⎢⎣
�visc 0 0

0 �visc 0

0 0 �visc

⎤⎥⎥⎥⎦ (A18)

K22uu =

⎡⎢⎢⎢⎣
�visc 0 0

0 �visc 0

0 0 �visc

⎤⎥⎥⎥⎦ (A19)

K33uu =

⎡⎢⎢⎢⎣
�visc 0 0

0 �visc 0

0 0 �visc

⎤⎥⎥⎥⎦ (A20)
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K12uu=KT21uu =

⎡⎢⎢⎢⎣
0 
visc 0

�visc 0 0

0 0 0

⎤⎥⎥⎥⎦ (A21)

K13uu=KT31uu =

⎡⎢⎢⎢⎣
0 0 
visc

0 0 0

�visc 0 0

⎤⎥⎥⎥⎦ (A22)

K23uu=KT32uu =

⎡⎢⎢⎢⎣
0 0 0

0 0 
visc

0 �visc 0

⎤⎥⎥⎥⎦ (A23)
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